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‣ non-linear equations of motion

‣ linearization around 𝐪 ≡ 𝟎

‣ the ansatz 𝐪 = 𝐯𝑒𝜆𝑡 leads to the eigenvalue problem

‣ asymptotic stability

inertia

damping

gyroscopic

stiffness

circulatory

Self-excited mechanical systems
Introduction
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Self-excited mechanical systems
Examples

‣ ground resonance in helicopters [1]

‣ vibrations in paper calenders [2]

‣ brake squeal [3]

 friction-induced sound

 pure comfort problem in most cases

 does not affect main function
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‣ linear equations of motion

with

and RAYLEIGH damping

Damping in circulatory systems
A simple example
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flutter instability

Damping in circulatory systems
A simple example

‣ for 𝛼 < 0.02 s−1, the stability of 

the trivial solution strongly 

depends on the value for 𝛽

‣ for 𝛼 > 0.04 s−1, the system will 

be asymptotically stable for any 

value of 𝛽

‣ the effect of the damping 

matrix significantly depends on 

its structure

2

1

1

1 2 asymptotic stability

stability map in 𝛼-𝛽-plane
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Minimal model of wobbling disc brake
Introduction

‣ rigid disc rotating with constant 

angular speed hinged in a spherical 

joint

‣ two guided pins in frictional 

contact with the disc

‣ assumptions:

 COULOMB‘s law

 no sticking  equations of 

motion can be linearized

von Wagner et al. 2007 [4]



TU Darmstadt  |  Dynamics and Vibrations Group  |  Dominic Jekel  |  7

Minimal model of wobbling disc brake
Parameter reduction

‣ equations of motion from Ref. [4]

‣ rescaling the vector of generalized coordinates and the time

‣ rescaled equations of motion

‣ reduction from 10 to 7 dimensionless parameters
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Minimal model of wobbling disc brake
Dimensionless matrices
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‣ Dimensionless damping matrix

‣ eigenvalues of  𝐌 𝐃 𝐆 𝐊 𝐍-system

Minimal model of wobbling disc brake

Decomposition of  𝐃

damping in the disc

damping in the pins

friction coefficient

thickness-radius ratio
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Minimal model of wobbling disc brake
Stability considerations

‣ the trivial solution is unstable if 

only COULOMB damping is active 

(𝛼1 = 𝛼2 = 0)

‣ stabilization by adding 

sufficiently high damping in the 

disc and in the pins

‣ optimum point for 𝛼1 and 𝛼2?

flutter instability1 2 asymptotic stability

1

2

stability map in 𝛼1-𝛼2-plane
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Minimal model of wobbling disc brake
Stability considerations

maximum real part over 𝛼2

‣ increasing 𝛼1 (damping in the 

disc) always stabilizes

‣ the optimum value for 𝛼2

(damping in the pins) is   

𝛼2𝑜𝑝𝑡 ≈ 100

‣ optimum point in technically 

relevant range?
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Minimal model of wobbling disc brake

Optimization of  𝐃

‣ optimization problem 

‣ optimization by Mathematica function „NMinimize”

 constrained nonlinear optimization

 Nelder-Mead method

 constant total damping

 upper and lower limits
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Minimal model of wobbling disc brake

Optimization of  𝐃

optimization results

‣ the maximum real part can be 

reduced by 23.5 % 

‣ the equilibrium state is more 

stable with the optimized 

structure of the damping matrix

non-optimized optimized
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Minimal model of wobbling disc brake

Optimization of  𝐃

optimization results

non-optimized optimized

‣ recommendation of the 

optimization:

 damping in the disc

 damping in the pins
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Summary and outlook

results:

‣ the decomposition of the damping matrix is also applicable to larger 

matrices

‣ the stability boundary can be adjusted by scaling the different damping 

matrices

‣ the optimization of the structure of the damping matrix stabilizes the 

equilibrium state

still do be done:

‣ the transfer of the found results to larger models
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