
Real and simulated CBM data interacting with an ESCAPE datalake

E. Clerkin∗1, P.-N. Kramp2, P.-A. Loizeau1, and M. Szuba2

1FAIR, Darmstadt, Germany; 2GSI, Darmstadt, Germany

Introduction
ESCAPE is an on-going EU-funded Horizon 2020

project whose aim is to standardise, store and share
data from large scale European astronomical and particle
physics infrastructure under the auspicious of open science,
sharing data, and possibility of leveraging efforts of cit-
izen scientists worldwide towards astronomy and experi-
mental particle physics research. The FAIR particle ac-
celerator in Darmstadt is a member of this collaborative
cluster and the CBM experiment as a pillar of FAIR has
been proactive in engaging with testing, and validating the
tools for this open science project. In particular, in the case
of the CBM experiment, here we document the CBM in-
teracting with the FAIR and CERN datalakes, which are
distributed repositories of raw or blobs of semi-structured
data used for managing big data, as maintained by other
work-packages of the ESCAPE project. For information
on ESCAPE, Refs. [1, 2, 3] and the references therein may
be consulted.

We wanted to showcase a spectrum of CBM data inter-
acting with ESCAPE data environment in a broad sense.
Fig. 1 shows a highly simplified block diagram of possible
interaction points of CBM and ESCAPE. The CBM exper-
iment is in its production stage and its software suite CBM-
ROOT is still under active development, but we neverthe-
less wanted to showcase ESCAPE interacting with both
experimental and simulated data. On the simulation side,
many of the existing tools may be tuned to interact with the
ESCAPE datalakes. In particular we will interact with the
datalake as our storage medium for input and output of data
for transport and digitisation stages. For real experimental
data, CBM has a mini CBM project (mCBM; cp. Ref.[4])
which takes beam from the existing GSI SIS18 accelerator
and is used by us in the CBM collaboration to test hard-
ware and software of the full CBM. It will here give us the
exciting opportunity to showcase ESCAPE interacting di-
rectly with a functioning particle physics experiment under
real-time data injection conditions. This was the first-time
a showcase of this kind was shown. Lastly, to complete the
data demonstration, the final task was to interact at the re-
construction of tracks stage which may be thought of as the
basic data analysis step. We had the two options to either
interact with simulated data or with the mCBM real exper-
imental data. It was decided to use real data from mCBM
July 2020 data processing run as a stronger statement of
ESCAPE usability. These three demonstrations were pre-
pared during the course of 2021 and the efforts accumu-

∗ e.clerkin@gsi.de

lated and showcased during a single week period for the
data acquisition challenge (DAC21) in November 2021. In
each of the three sections that follow, we report on the suc-
cess of each of these challenges. This report was compiled
from the DAC21 activities logbook. All times are approxi-
mate and in UTC.

URQMD

CBM Transport
GEANT 3|4

CBMROOT
digitisation

simulation experiment

CBMROOT | RECONSTRUCTION

Figure 1: Basic block diagram layout displaying interac-
tion points between the CBM toolkit and external software
packages for the CBM experiment at GSI/FAIR.

mCBM data ingestion

In order to showcase the injection of real-time data, it
had been hoped that mCBM cosmic-ray data taking which
was originally planned for early November would be avail-
able. During late November, this had been rescheduled
for December. During the DAC, it was instead decided to
replay acquisition of data taken by mCBM in July 2021.
From the data-lake point of view, this is functionally the
same as if we had data coming directly from the detector.
Fig. 2 shows a photo of the mCBM experiment at this time,
with the detector acronyms overlaid.

The task and our team was split between a replay side
and an injection side. The physical transfer of data was not
needed in this demonstration. It was noted that the FAIR
datalake was hosted on the same lustre filesystem as was
replayed to by the replay team, but instead replicas of the
data were registered to the datalake providing its function-
ality.

Computing: Offline Analysis Environment CBM Progress Report 2021

190



Replay Side
• 2021-11-23, 15:00 - preparatory scripts for replay

start. Several issues needed to be overcome whereby
locked-in commands tried to specific ssh-keys were
disabled by IT administrators. Our original plan there-
fore needed a work around and an alternative approach
was pursued. The process was achieved by rsyncing
of the experimental data over Infiniband at 150-200
MB/s, with 10 parallel copy jobs run on the GSI Green
IT Cube cluster, leading to a 2 GB/s average rate. This
rate was chosen to mimic the approximate high rate
of mCBM data taking. The job array started at 18:32,
most of them (9/10) finished around 18:36. One of the
files had a much reduced writing speed of 800 kB/s
due to an unknown reason. Writing for the final de-
layed file closed at 19:56.

Infrastructure used: As a source, two compute nodes
of the miniFles cluster (experiment side cluster of the
mCBM), with each 5 HDD (4 TB) holding the original data
files of the mCBM 2021 beam campaign. The files were
written in parallel so at least one file from each HDD is
needed to reconstruct a segment of any mCBM run.

mFLES to Virgo (GSI batch cluster hosted in the Green-
Cube building) Infiniband backbone comprises of 10 Virgo
logical nodes (SLURM jobs with non-default resources op-
tions), with 8 GB RAM each, each executing an rsync pro-
cess to one of the mFLES HDD for the first 10 files of a
typical mCBM run.

Ingestion Side
• 2021-11-23, 15:30 - initial setup

• 2021-11-23, 17:30 - status check shows no replicas
or rules having been registered with Rucio in spite of
the first batch of files having already appeared in the

Figure 2: Above image shows the mCBM experimental
setup. The beam pipe is visible transversing the lower right
quadrant and the target box on the right centre of the photo.
Each of the six detectors subsystems are over-labelled.

source directory. Problem tracked down to file-system
notifications not functioning as expected, began con-
verting the script to polling mode

• 2021-11-23, 18:00 - tests of converted script repeat-
edly fail on connections to the CERN Rucio server
being refused. Eventually discovered that recent
changes to GSI network which allowed direct access
to FAIR-ROOT from our compute cluster, now require
rucio-clients traffic from FAIR-ROOT to the Rucio
server to go through a local HTTPS proxy

• 2021-11-23, 18:30 - refactored script launched suc-
cessfully, with forced delay of 60 seconds between
files to avoid pile-up. Replicas begin to be added to
the data lake

• 2021-11-24, 13:00 - status check shows 92 replicas
registered successfully but owing to a typo, the script
only ran once instead of periodically. Ran the script
again to register the remaining 8 files

• 2021-11-24, 13:15 - final status check shows all 100
replicas registered successfully. Conducted a random
sampling of associated DIDs, all files accessible

Conclusions

Achieved asynchronous zero-copy injection of mCBM
data into the data lake. Registering a replica and a corre-
sponding replication rule took 30-60s per each 4-GB file
(having subtracted the aforementioned forced delay), i.e.
comparable to the rate at which the data has been replayed

Current bottleneck: calculation of Adler32 checksums
(which obviously has to be done at least once, although
with a bit of care one can avoid repeating the calculations
for unchanged data) on the client side prior to registration
of new replicas. This would ideally use checksums cal-
culated by the underlying file system at the time of data
being stored (if available and possible to be extracted at
file rather than inode level), however Adler32 appears to
be supported by rather few modern file systems and may
not be available even when supported (e.g. at GSI - Lus-
tre does support Adler32 but our cluster uses CRC-32C for
performance reasons)

Possible future development in Rucio: add support for
more modern checksum algorithms (e.g. xxhash as fast
hash and SHA256/BLAKE2B as strong hash), ideally fea-
turing a transition path from the current Adler32+MD5
schema

CBM simulation

The future CBM experiment at FAIR in its electron con-
figuration with a MVD, STS, RICH, TRD, TOF and PSD
detectors was simulated. (See Fig. 3) This constitutes the
most detector rich configuration of the full CBM experi-
ment.

CBM Progress Report 2021 Computing: Offline Analysis Environment

191



Figure 3: Left shows the CBM simulation geometries for
the future CBM experiment at FAIR. It consists of a blue
magnet yoke on the right, followed by the RICH detector,
the TRD, the TOF and PSD detector on the left. The beam
enters from the right. The STS detector is contained inside
the magnet. Right shows hits after transport from the demo
scripts used during DAC21. Black (Blue) points show hits
in the sensors of the MVD (STS) detector.

Task completed during (Thu 2021-11-25) and (Fri 2021-
11-26). In the weeks before the challenge, several docker
images and demo scripts were prepared. CBMROOT, our
simulation software developed at GSI/FAIR for the simula-
tion of the CBM experiments is built upon FairRoot which
in turn is built upon FairSoft software packages. Docker
images for each of these steps, starting from the most recent
stable docker-hub Debian release were produced. Finally a
fourth docker image containing the necessary python, gfal,
rucio [5], java, voms-client [6] and xrootd [7] was subse-
quently built on top. This allowed the task to be completed
using a standard MacBook connected to a network external
to GSI running a docker container.

transport
(demo2.sh)

URQMD data

dac21.tra.rootdac21.par.root dac21.geo.root

digitisation
(demo3.sh)

dac21.raw.root

Figure 4: Demos used in simulation challenge. The red
arrows show data extracted from data lake, and the blue
arrows show data sent to the datalake.

Demo script one (demo1.sh) uploaded initial URQMD
data to the data lake using Rucio and followed an extrac-
tion from the data lake. The file was consistent with initial
interaction of a gold beam of 10AGeV on a gold target.
File consistency was verified via md5sum before and after
uploads. Subsequent running of script would have returned
failure as this data had already been placed on the datalake
and therefore would not have been needed to be run during
DAC21.

A second demo script (demo2.sh) simulates the transport
of particles through the CBM experiment in its electron
setup as shown in the left panel of Fig. 3. Three data files
are uploaded to the data lake containing parameters, geom-
etry and transport data as symbolically represented by the
blue arrows in Fig. 4. It was decided that the demo script
would run as a cron job running every 5 minutes which
started on Thursday evening and continued through to Fri-
day midnight.

A third script (demo3.sh) extracted some of this trans-
port data and generated digitisation data which was run ad-
hocly during the two days. Hits in the sensors of the CBM
detector for a typical run is displayed in the right panel of
Fig. 3. Demonstration was sporadically successful. It is
noted however that interaction with the datalakes gave error
messages due to server side issues. Additionally, timeout
of voms proxy was also an issue, as some long timelapses
between connections occurred. Success and failure statis-
tics are discussed in the proceeding study.

mCBM reconstruction
Goal of this task was to reconstruct recent mCBM (July

2021) data interacting with the data lake. Task was com-
pleted inside a docker container run on a Gentoo Linux
desktop machine on the internal GSI network.

• 2021-11-22 It was noted that much of our demo envi-
ronment developed for this task suddenly became ob-
solete due to changes in the development branch of
CBMROOT which required updated versions of Fair-
Soft and FairRoot. To make matters worse, these were
major rather than incremental changes which required
modification of the installation process. Bleeding-
edge CbmRoot was needed for reconstruction of July
data as tracking and reconstruction code were being
actively developed. The necessary CBMROOT soft-
ware was not available to complete this task on this
day.

• 2021-11-23 Development of new Docker Images built
on latest stable Debian, building a FairSoft image, on
which a FairRoot image was built followed by a Cbm-
Root image. Finally an image with Rucio, gfal li-
braries, xrootd and all necessary additions to CBM-
ROOT necessary to complete this task was built on
top of the CbmRoot image.

• 2021-11-24 Although unpacking of mCBM had been
working for a week prior to DAC21, unpackers had

Computing: Offline Analysis Environment CBM Progress Report 2021

192



made it into CbmRoot the week prior, several devel-
opments in the reconstruction data still had not been
submitted to the CBMROOT development branch. It
is therefore difficult to prepare for this DAC21 task
ahead of time. On this day, our CBMROOT software
was still not able to reconstruct the 2021 data and we
seriously planned to switch to plan B which meant re-
constructing 2020 data instead.

• 2021-11-25 New tracking and reconstruction code
merged to the development branch of CbmRoot by its
tracking team. These new CBMROOT macros allow
reconstruction of the real experiment 2021 data from
the SIS18 experiment shown in Fig. 2. The simula-
tion geometries shown in Fig. 5 was used during the
reconstruction process.

• 2021-11-26 13:00 CbmRoot source code updated and
rebuilt within the running Docker container. This was
also done so as to not have to rerun the docker image
which was being used for the task.

• 2021-11-26 15:00-19:00 Several demonstration
scripts tested and completed our task although in an
ad-hoc fashion. Decided a systematic approach is
warranted.

• 2021-11-26 18:47 Some raw mCBM data from run
1588 taken during July 2021 is uploaded to the data
lake using a Rucio-upload command. This forms the
basis for later reconstruction.

• 2021-11-26 20:05 Script (demo6.sh) pulls this mCBM
data. If pull is successful then continues, otherwise
failure 1 is output to the log file. Next the script re-
constructs the data using standard mCBM reconstruc-
tion macros merged into CBMROOT the day before.
Upload reconstructed data to data lake otherwise de-
clare failure 2 to the log files. Only full completion is
considered a success.

• 2021-11-26 20:05 In order to get some success/fail-
ure statistics, this demonstration was run one hundred
times with the script (demo6.sh) in a “for” loop with
a 60 second sleep between runs.

Statistics trial started at 21:04:50 and ended at 23:25:50.
Of the 100 cases, 0 had “failure 1”, i.e. reading the raw
mCBM data from the data lake using a Rucio-get com-
mand, 75 had “failure 2”, i.e. writing the reconstructed
mCBM data to the data lake using a Rucio-upload com-
mand, and 25 were deemed fully successful having no fail-
ures reported. The failure rates were high, as one of the pro-
tocols failed on the clients side. The target RSE supported
both “root://” and “davs://” as protocols. When contacting
the RSE via the Rucio upload command, the Rucio client
primarily chose “davs://” as the protocol. The “davs://”
protocol was not supported in the container due to a minor
error in the configured paths. gfal2, using its HTTPS plug-
in, couldn’t resolve the libdavix dependencies correctly. It

therefore reported that the protocol is not supported. The
error message also contained ”The requested service is not
available at the moment”, which is misleading and lets a
user believe that the service was at fault. Despite the high
failure rates, overall the challenge was deemed successful
as a showcase of reconstruction of mCBM data interacting
with the ESCAPE data environment.

Figure 5: Shows the simulation geometries of the July
mCBM setup. The figure is comparable to the photo shown
in Fig. 2

References
[1] R. Bolton, S. Campana, A. Ceccanti, X. Espinal, A. Fkiaras,

P. Fuhrmann and Y. Grange “ESCAPE prototypes a data in-
frastructure for open science” EPJ Web of Conferences 245,
04019 (2020) CHEP 2019

[2] M. Allen, G. Lamanna, X. Espinal, K. Graf, M. van Haar-
lem, S. Serjeant, I. Bird I, E. Cuoco, and J. Wagh “ESCAPE-
addressing Open Science challenges”

[3] R. Di Maria, R. Dona “ESCAPE Data Lake” EPJ Web of
Conferences 2021 (Vol. 251).

[4] “mCBMSIS18 – A CBM full system test-setup for high-rate
nucleus-nucleus collisions at GSI/FAIR” The CBM Collabo-
ration, Letter of Intent, 19 June 2017

[5] C. Serfon, M. Barisits, T. Beermann, V. Garonne, and L.
Goossens, M. Lassnig, A. Nairz, R. Vigne, Ralph et al. “Ru-
cio, the next-generation Data Management system in AT-
LAS” Nuclear and particle physics proceedings, 2016, vol-
ume 273, pages 969-975

[6] Alfieri R, Cecchini R, Ciaschini V, Frohner A, Gianoli A,
Lorentey K, Spataro F. “VOMS, an authorization system
for virtual organizations” European Across Grids Conference
2003 Feb 13 (pp. 33-40)

[7] Bauerdick LA, Bloom K, Bockelman B, Bradley DC, Dasu S,
Dost JM, Sfiligoi I, Tadel A, Tadel M, Wuerthwein F, Yagil
A “XRootd, disk-based, caching proxy for optimization of
data access, data placement and data replication.” Journal of
Physics: Conference Series 2014 Jun 11 (Vol. 513, No. 4, p.
042044)

CBM Progress Report 2021 Computing: Offline Analysis Environment

193


